Visualizzazione post con etichetta logica. Mostra tutti i post
Visualizzazione post con etichetta logica. Mostra tutti i post

domenica 28 gennaio 2024

Vincenzo Fano − I paradossi di Zenone − quarta parte − spazio e tempo sono densi? - Weierstrass e Russell


Come già scritto, il libro I paradossi di Zenone di Vincenzo Fano è stato fondamentale nel percorso di ricerca per il mio terzo libro, Il mistero della discesa infinita. Oltre ai già citati Giovanni Cerri e Gustavo E. Romero, l'opera di Fano è stata una risorsa di inestimabile valore, svolgendo un ruolo chiave nell'approfondimento del pensiero di Zenone in relazione al moderno pensiero scientifico, matematico e filosofico.

Qui continuerò la sintesi delle premesse di Fano per affrontare le interpretazioni di Bertrand Russell del paradosso della dicotomia (che si basano sui risultati dei matematici CantorDedekindWeierstrass e Peano).

Dicevamo che, dopo aver mostrato come Brouwer affronta matematicamente la questione già sottolineata da Aristotelee cioè che un insieme di elementi discreti non può rappresentare il continuo geometrico o intuitivo, Fano analizza uno dei dilemmi che sono alla base di almeno due dei paradossi di ZenoneSe lo spazio fisico sia o no un insieme denso di punti.

Fano cita un'idea di Grünbaum (Modern Science and Zeno's Paradoxes, p. 44), secondo cui, quando si propone un ipotesi matematicamente esatta sulla natura di un oggetto reale, è opportuno confrontare tale ipotesi con la percezione. Infatti, anche se la percezione è parzialmente illusoria, essa è la prima nostra fonte di conoscenza e quindi va rispettata.
Tuttavia, un continuo spaziale percepito, come ad esempio un tratto di matita nera su un foglio bianco, non viene colto come un insieme denso di punti. Certo possiamo definire in esso dei minimi percepibili, considerando che la percezione visiva spaziale possiede una soglia.
Quindi potremmo anche dire che esso è in potenza formato da un insieme finito e discreto di minimi percepibili. Ma tali minimi non risultano evidenti. Possiamo quindi affermare, con Grünbaum, che la percezione non testimonia contro l'affermazione che lo spazio sia composto da un insieme denso di punti, sebbene non testimoni neanche a favore di questa tesi.

L'argomento più forte a favore del fatto che lo spazio fisico sia composto da un insieme denso di punti, afferma poi Fano, è, invece, il successo delle attuali teorie fisiche
meccanica classica, meccanica quantistica, relatività ristretta e generale, elettromagnetismo, elettrodinamica quantistica e modello standard. Tutte queste teorie presuppongono uno spazio fisico densoper cui, se abbracciamo una forma di realismo scientifico, anche moderato, arriviamo alla conclusione che, per quanto ne sappiamo, lo spazio fisico è denso. Il realismo scientifico moderato, infatti, afferma che le migliori spiegazioni di un dato dominio di oggetti sono almeno in parte vere anche riguardo a ciò che non è osservabile. Dunque è ragionevole supporre che lo spazio fisico sia effettivamente denso.

La densità del tempo 
Ma una tale supposizione può essere valida pure per il tempo? In "I paradossi di Zenone − seconda parte − I contributi di Aristotele al paradosso della dicotomia" abbiamo visto che la soluzione aristotelica del paradosso si basava sull'infinità divisibilità del tempo.

Così come per il caso dello spazio, Fano prende in considerazione un esempio concreto. Per lo spazio aveva considerato un tratto di matita e per il tempo considera una palla che si muove su di un tavolo da biliardo
Ora non abbiamo più un oggetto statico come il tratto di matita ma un oggetto in movimento.

Fano considera le due diverse concezioni del movimento: la cosiddetta teoria at-at, solitamente attribuita a Bertrand Russell, per cui essere in movimento significa “essere in luoghi diversi in istanti diversi. E quella aristotelica, secondo la quale il movimento è "l’atto di ciò che è in potenza in quanto in potenza" (Fisica, 201a: 10-11 e 201b, 4-5).

La prima è una teoria precisa e, di fatto, accettata dalla maggior parte degli studiosi. Tuttavia è non solo poco intuitiva, ma anche problematica, perché implica, come si vedrà, una radicale forma di indeterminismo. La seconda, invece, è oscura, ma rende certamente meglio l'idea del movimento come qualcosa di non rappresentabile in modo completo nello spazio e nel tempo.

Per fare un esempio, la teoria at-at afferma che se Gianna alle 15:20 è in camera sua e alle 15.21 è in cucina, allora si è mossa. Per Bergson (1889, pp. 64 70) questo non è il movimento, ma "il già mosso"; cioè un fatto compiuto. In effetti, se Gianna sparisse dalla sua stanza alle 15:20 e ricomparisse in cucina alle 15:21 non potremmo dire che fra le 15:20 e le 15:21 si stava muovendo, possiamo al massimo dire che si è mossa, cioè che non è più nello stesso luogo.

Per Aristotele, invece, il movimento implica necessariamente un'analisi ontologica in termini di ciò che è attuale e di ciò che è potenziale. In prima approssimazione potremmo dire che il movimento è l’attualità di una potenzialità. Ad esempio, Gianna nella sua camera porrebbe andare in cucina, e fra le 15.20 e le 15.21 realizza questa possibilità. Se questa fosse stata la definizione aristotelica di movimento, di nuovo faremmo confusione con il già mosso, cioè il passaggio dalla potenza all'atto sarebbe solo un modo ontologicamente diverso di descrivere qualcosa di simile a quello che racconta la teoria at-at. È forse per questa ragione che Aristotele aggiunge quella strana postilla: il movimento è l'attualità di una potenzialità in quanto in potenza. Infatti quel "in quanto in potenza" sta a indicare che non stiamo parlando di '"già mosso", ma di movimento, cioè questo passaggio deve contenere in sé ancora potenzialità, ossia deve essere qualcosa di incompleto (Brentano, 1862, pp. 52 ss.; Kostman, 1987; Ross, 1936, p.-dl.).
Tutto ciò è molto interessante, ma irrimediabilmente impreciso.

Fano propone quindi un miglioramento della teoria at-at del movimento dicendo che la palla da biliardo è in moto in un certo istante se, preso un lasso di tempo Δtε piccolo a piacere, che comprenda t, in istanti diversi di Δtε essa si trova in luoghi diversi. In pratica, affinché ci sia movimento, deve esserci continuità del moto. In questo modo, usando una procedura ispirata al metodo rigoroso di Weierstrass, abbiamo reso un po’ più intuitiva la teoria at-at. Infatti per affermare che la palla si muova nel lasso di tempo Δtε è necessario che si muova in tutti gli istanti che appartengono a Δt.
Vedremo che questa definizione lascia dei problemi aperti, però è probabilmente il meglio che siamo riusciti a fare a tutt’oggi, grazie al genio di Weierstrass.

Secondo molti autori (Whitehead e Grünbaum), tuttavia, il tempo percepito, a differenza dello spazio, sarebbe discontinuo.

Ma secondo Fano sembra più naturale affermare che, così come nel caso dello spazio, la continuità o discontinuità della temporalità dipenda dalla struttura percettiva di ciò che stiamo percependo: cioè se percepiamo il movimento della palla da biliardo la sua temporalità sarà continua mentre se stiamo percependo il battito del nostro cuore la temporalità sarà discontinua.
Questa tesi è confermata anche dai più recenti studi di psicologia cognitiva(Fingelkurts 2006). Inoltre, anche in questo caso le migliori teorie fisiche presuppongono che il tempo sia denso; perciò abbiamo buone ragioni per ritenerlo tale.

Fano conclude quindi che, una volta accertata la densità dello spazio, siamo naturalmente portati ad assumere anche quella del tempo.

L'autore si immerge quindi nella problema considerando la spazializzazione e la misurabilità del tempo. Questioni che affronteremo nella prossima puntata.

mercoledì 1 novembre 2023

Vincenzo Fano − I paradossi di Zenone − terza parte − Bertrand Russell: spazio e tempo sono infinitamente divisibili?


Come già menzionato, il libro I paradossi di Zenone di Vincenzo Fano è stato fondamentale nel percorso di ricerca per il mio terzo libro, Il mistero della discesa infinita. Oltre ai già citati Giovanni Cerri e Gustavo E. Romero, l'opera di Fano è stata una risorsa inestimabile svolgendo un ruolo chiave nell'approfondimento del pensiero di Zenone in relazione al moderno pensiero scientifico, matematico e filosofico. 

Qui presenterò una sintesi delle premesse di Fano per affrontare le interpretazioni di Bertrand Russell del paradosso della dicotomia (che si basano sui risultati dei matematici Cantor, Dedekind, Weierstrass e Peano).

Premesse alla soluzione di Russell

Prima di tutto bisogna distinguere tra infinita divisione e infinita divisibilità. Abbiamo visto che Aristotele distingue i due concetti attraverso la differenza tra in potenza e in atto. Mentre noi dobbiamo ragionare in modo diverso, date le difficoltà nel tentare di definire il concetto di "in potenza" in modo rigoroso secondo il nostro moderno pensiero razionale.

Infinita divisibilità1

Da Cantor in poi si interpreta l’infinita divisibilità di un segmento di spazio come l’affermazione che esso è costituito da un insieme infinito e non numerabile di punti. Ma questa interpretazione comporta una rivoluzione completa rispetto alla concezione aristotelica e non solo, secondo la quale l’infinito può esistere solo in potenza, poiché qui si parla di infinito in atto.
Invece, se volessimo restare nello spirito dell'antico dibattito, dovremmo provare a definire con rigore la nozione aristotelica di infinita divisibilità senza avvalerci del moderno concetto di punto matematico. Compito assai arduo che non perseguiremo.

Proseguendo, invece, sulla strada del metodo moderno, va precisato che la locuzione “infinitamente divisibile” che dobbiamo studiare riguarda la fisica e non la matematica, perché nell’argomento della dicotomia è un tratto di spazio fisico a dover essere infinitamente divisibile.
Inoltre, non ci stiamo chiedendo solo se lo spazio sia o meno infinitamente divisibile, ma anche quale sia il senso di questa espressione. Come si può procedere all’infinito nella divisione? Sebbene i fisici di oggi prescindano dalla percezione, sarebbe ragionevole supporre che quando introduciamo dei concetti della fisica ci attenessimo almeno a un principio di percepibilità naturalisticamente inteso. Ovvero nelle nostre teorie fisiche possiamo ammettere solo quelle entità teoriche (non osservabili) per le quali siamo in grado di spiegare perché non le percepiamo o perché le percepiamo con una struttura diversa da come la teoria le delinea.

Possiamo allora procedere nel modo seguente: diciamo che un tratto di spazio è infinitamente divisibile se, presa una parte di esso piccola quanto si vuole, essa è ancora divisibile.

L’espressione “piccolo quanto si vuole” ci porta nell’ambito dell’inosservabile. D’altra parte si potrebbe concepire una tecnologia sempre più avanzata che, in linea di principio, ci porti a scendere sempre di più nel più piccolo.

Dobbiamo adesso definire il concetto di “divisibile “.
Se consideriamo una striscia bianca senza divisioni percettive,

potremmo usare un metodo simile a quello di Dedekind, ma si ha la sensazione che i metodi del taglio presuppongano la divisibilità della striscia, piuttosto che definirla.

Dei diversi tentativi di rendere rigoroso il concetto aristotelico di infinita divisibilità, Fano discute solo quello del matematico Luitzen Brouwer, fondatore della "scuola intuizionistica". 
Brouwer sarebbe stato il primo a mostrare come incorporare nella matematica la questione già sottolineata da Aristotele che un insieme di elementi discreti non può rappresentare il continuo geometrico o intuitivo. Fano dedica alcune pagine per sintetizzare la complessa tecnica sviluppata da Brouwer (1930), e ripresa da Kreisel (1968) e Troelstra (1983).

L'autore analizza quindi uno dei dilemmi che sono alla base di almeno due dei paradossi di Zenone. Se lo spazio fisico sia o no un insieme denso di punti. Ne parleremo nella prossima puntata.

1 Desidero condividere una breve osservazione che va al di là del contenuto del libro di Fano.

Ho notato una chiara connessione tra la seconda antinomia kantiana e il concetto di infinita divisibilità. Sorprendentemente, non ho ancora trovato alcun articolo che esplori questa correlazione. Se qualcuno ne fosse a conoscenza, gli sarei grato se me lo segnalasse.

lunedì 4 settembre 2023

Vincenzo Fano − I paradossi di Zenone − seconda parte − I contributi di Aristotele al paradosso della dicotomia


Un altro punto di riferimento nel mio lavoro di ricerca per il mio terzo libro, Il mistero della discesa infinita, oltre ai già citati Giovanni Cerri e Gustavo E. Romero, è stato il libro I paradossi di Zenone di Vincenzo Fano. Il lavoro dello studioso di logica ed epistemologia mi ha aiutato molto a comprendere il pensiero di Zenone in rapporto al moderno pensiero scientifico, matematico e filosofico.

Qui riporterò una sintesi delle considerazioni di Fano relative alle interpretazioni di Aristotele del paradosso della dicotomia.

La soluzione di Aristotele

Fano propone un'interpretazione di tre passi significativi significativi della Fisica per comprendere la discussione aristotelica sulla Dicotomia.

Prima di tutto Aristotele dimostrerebbe che se lo spazio è infinitamente divisibile lo è anche il tempo. Dopo di che egli osserva che “nella metà di un dato tempo si percorre la metà di una data lunghezza”. Quindi afferma che: "le divisioni del tempo possono essere messe in corrispondenza con quelle dello spazio. La divisione dello spazio che compare nel paradosso non è secondo le estremità (cioè non stiamo parlando di uno spazio infinito), ma secondo la divisione, ovvero è uno spazio finito infinitamente divisibile. Anche il tempo lo è. Quindi non abbiamo una corrispondenza fra uno spazio infinito e un tempo finito ma fra spazio e tempo infiniti nel senso della divisione.

Aristotele discute poi se un punto del moto di un corpo sia in atto o in potenza; e conclude che "se è un punto in cui il corpo arriva e riparte, come ad esempio l’estremo di un moto pendolare, allora quel punto del moto è in atto, altrimenti un punto in mezzo a un moto è solo in potenza

Aristotele nota dunque un ulteriore aspetto dell’argomentazione di Zenone, che non è riconducibile al fatto che per percorrere un insieme infinito di spazi finiti occorre un tempo infinito, ma che in generale non sia possibile compiere un insieme infinito di atti, per il semplice fatto che l’infinito non ha ultimo termine. In altre parole non sarebbe possibile per il corpo C andare da a a b, perché C dovrebbe compiere un’infinita di attraversamenti, e un’infinità non ha un termine finale, per cui C non può arrivare in b. Questo vorrebbe indipendentemente dalla lunghezza degli intervalli. 

"In altre parole, qui Aristotele si sta ponendo con ogni probabilità il problema che i moderni teorici dei supercompiti (ossia realizzare un numero infinito di atti in un tempo finito) sollevano rispetto alle soluzioni standard del paradosso della Dicotomia, cioè a quelle basate sul fatto che la successione Sn = 1- 1/2n per n che tende all'infinito tende a 1.

In termini moderni il problema dei supercompiti è duplice: in primo luogo non si comprende come si possa realizzare un numero infinito di moti in un tempo finito, indipendentemente dal fatto che la loro somma abbia lunghezza finita; in secondo luogo, il fatto che la successione Sn tenda a 1 per N che tende allinfinito riguarda i termini della successione e non il punto darrivo; infatti, 1 non è membro di tale successione. Quindi, avendo dimostrato che Sn tende a 1 non abbiamo ancora provato che il corpo C arrivi a destinazione.

Ma anche così si potrebbe obiettare: resta il fatto che qualsiasi affermazione riguardante la successione degli Sn non è detto che valga per il punto B che non appartiene a essa
Quindi, per risolvere definitivamente questo problema, occorre invocare una sorta di principio di continuità. Ovvero se lo spazio è continuo allora non sussiste nulla fra la serie infinita degli intervalli compresi in ab e il punto B. Per cui il corpo non può che arrivare in B. Questo non solo vale per la fisica contemporanea ma era vero anche per Aristotele.

Nella prossima puntata vedremo l'approfondimento di Fano sul suddetto principio di continuità e le sue premesse per affrontare le  interpretazioni di  Russell (che usò i risultati dei matematici Cantor, Dedekind, Weierstrass e Peano) del paradosso della dicotomia.

mercoledì 31 agosto 2022

Vincenzo Fano − I paradossi di Zenone − prima parte − una formalizzazione del paradosso della dicotomia e il contributo di Diogene il Cinico

Un altro punto di riferimento, oltre ai già citati Giovanni Cerri e Gustavo E. Romero, per comprendere il pensiero dei filosofi eleati in rapporto al moderno pensiero scientifico e matematico è stato il libro I paradossi di Zenone di Vincenzo Fano.

Qui riporterò una formalizzazione di Fano del paradosso della dicotomia e le sue considerazioni sull'interpretazione di Diogene il Cinico.

1. Prima di tutto Fano espone il paradosso in termini un po' più precisi rispetto alle formulazioni informali.

"Supponiamo che un corpo C si muova da a a b, due differenti luoghi spaziali, con velocità costante. Supponiamo, per semplicità, che la distanza fra a e b sia uguale a 1m e il viaggio duri 1s. Se ipotizziamo che la velocità di C sia costante, essa sarà di 1 m/s."

Ovviamente, per attraversare metà del percorso, C impiegherà 1/2 s. In generale, secondo la cinematica classica, impiegherà esattamente 1/M unità di tempo per percorrere un qualsiasi tratto di lunghezza 1/M contenuto in ab.

2. Quindi Fano rende esplicita l'ipotesi implicita di Zenone, che lo spazio sia infinitamente divisibile (ipotesi che in seguito lo stesso Fano mostrerà essere "non precisabile" - par 2.4).

3. "Dunque C, per andare da a a b, deve percorrere una serie infinita di intervalli di spazio adiacenti, il primo dei quali è lungo 1/2 m, il secondo 1/ 4, il terzo 1/8 ecc., che possiamo così indicare con:"

1/2, 1/4, 1/8, …, 1/2n

4. "Dato che C si muove con velocità finita, per attraversare ognuno degli intervalli della successione impiegherà una quantità finita di tempo."

5. Una conclusione affrettata potrebbe far pensare che una somma infinita di numeri finiti non può che essere infinita. Quindi C adopererà una quantità infinita di tempo per andare da a a b. Per cui C non arriverà mai a destinazione.

Tuttavia, "a una mente matematicamente educata apparirà subito qual è la fallacia nel ragionamento". E cioè che "una somma infinita di numeri finiti non può che dare infinito".
"Infatti, noi possediamo la matematica per affermare che la somma infinita dei membri della suddetta successione dà 1 e non infinito.






Detto questo, in un certo senso, si potrebbe affermare che la questione sia risolta. In realtà un esame storico-filosofico dell'argomento appena presentato aiuterà a comprendere molti aspetti non banali sullo spazio, il tempo, la loro quantificazione e l'infinito".

Il solvitur ambulando di Diogene il Cinico

Diogene Laerzio racconta che quando qualcuno provò a dimostrare che il moto non esiste, Diogene il Cinico si alzo in piedi e se ne andò. Come a dire che bisogna basarsi sull'esperienza e sulla pratica per risolvere questo problema.
"Il senso del gesto di Diogene il Cinico non è però risolutivo, poiché è vero che il movimento è empiricamente evidente, ma l'esperienza potrebbe comunque essere ingannevole, soprattutto se la logica ci mostra che il movimento è impossibile.
Si può anche riformulare così: molti sono d'accordo che il movimento è evidente e che coloro che lo ritengono un'illusione sono sulla strada sbagliata; ciononostante dobbiamo dimostrare in che senso i loro argomenti sono fallaci, cioè ci resta il compito di sostenere argomentativamente l'opinione più comune.

Continua su Vincenzo Fano − I paradossi di Zenone − seconda parte − I contributi di Aristotele al paradosso della dicotomia

giovedì 14 aprile 2022

Vincenzo Fano − I paradossi di Zenone − una piccola perla per chi voglia approfondire i paradossi del filosofo eleate

Vincenzo Fano, I paradossi di Zenone – Carocci editore.

Considero questo libro una piccola perla per chi voglia approfondire i paradossi di Zenone. Vincenzo Fano espone, destruttura e analizza le argomentazioni del filosofo eleate in modo piuttosto sintetico (142 pagine). L'autore, titolare della cattedra di Logica e Filosofia della Scienza dell’Università di Urbino, ha la rara capacità di inquadrare quei paradossi in una prospettiva ampia ed esaustiva considerandone, con straordinaria ampiezza interdisciplinare e giusto equilibrio agnostico, gli aspetti matematici, fisici e metafisici, in un percorso storico che, partendo dalle prime analisi di Aristotele arriva fino alla meccanica quantistica.

Di seguito ne riporto qualche brano.

“Uno dei pilastri della fisica contemporanea è il principio d’indeterminazione di Heisenberg, che afferma l’impossibilità di una contemporanea misurazione della posizione e della velocità di una particella. Louis de Broglie, affermò che la struttura teorica della meccanica quantistica sancisce l’incompatibilità fra una puntuale descrizione spazio-temporale di ciò che accade a livello microfisico e una comprensione dinamica ed evolutiva dei fenomeni, cioè le variabili velocità ed energia. E questo, secondo il fisico, è esattamente ciò che affermava Zenone con i suoi paradossi sul moto: la freccia, ad esempio, non può essere in moto e allo stesso tempo occupare una posizione precisa nello spazio."

“La filosofa canadese Trish Glazebrook, rilegge i paradossi di Zenone come una critica ai pitagorici, ma non a loro presunto atomismo matematico bensì alla tesi secondo cui la realtà sarebbe numero. … dopo la matematizzazione della fisica nel ‘600, forse parte dell’attualità degli argomenti di Zenone è proprio questa”. … Tale “lettura, pur essendo storicamente discutibile, è teoricamente ragionevole e insiste proprio sulla rilevanza dei paradossi nella riproposizione del problema dell’irragionevole efficacia della matematica nella spiegazione della fisica del mondo”. La Glazebrook intenderebbe “usare i paradossi di Zenone sul moto per sostenere che l’applicazione dei concetti matematici al mondo fisico porta paradossi” che “la matematizzazione della realtà fisica non è un’assunzione innocente: la descrizione matematica del moto è problematica.”

“Ma questo non significa che abbracciamo la tesi della filosofia italiana Alba Papa-Grimaldi (1996), secondo la quale le soluzioni matematiche dei paradossi non colgono il punto posto da Zenone, ne mai lo coglieranno. Benché le diverse possibili formalizzazione vadano sempre utilizzate con spirito critico, esse di fatto consentono una formulazione rigorosa dei problemi e un’analisi delle possibili soluzioni che difficilmente si possono raggiungere con linguaggio ordinario della filosofia. Perciò prendiamo le distanze da queste forme di misticismo, che oggi sono alquanto comuni”.
“Ancora oggi, dopo 2500 anni, vale la pena studiare i paradossi di Zenone perché aiutano a riflettere su spazio, tempo, continuo, discreto, materia e movimento.”

Continua...

lunedì 31 gennaio 2022

La fallacia della raccolta delle ciliegie

La fallacia della raccolta delle ciliegie descrive l'atteggiamento, spesso inconscio, di chi si concentra sui (pochi) fatti che confermano la propria tesi ignorando i (molti) fatti che potrebbero confutarla.

Ho l'impressione che ne cadiamo vittime molto più spesso di quanto pensiamo.

lunedì 28 dicembre 2020

Le dichiarazioni di Andrea Crisanti sul vaccino COVID19

Non credo che un virologo non potesse non immaginare che sarebbe finita così. E allora perché a novembre ha sentito quell’impellente necessità di rilasciare dichiarazioni che hanno confuso molti cittadini? 

19 novembre 2020: Andrea Crisanti: "Col primo vaccino a gennaio, senza dati, non mi vaccinerei"


Ecco un virgolettato della dichiarazione di Crisanti di novembre:
“Normalmente ci vogliono dai 5 agli 8 anni per produrre un vaccino. Per questo, senza dati a disposizione, io non farei il primo vaccino che dovesse arrivare a gennaio. Perché vorrei essere sicuro che questo vaccino sia stato opportunamente testato e che soddisfi tutti i criteri di sicurezza ed efficacia. Ne ho diritto come cittadino e non sono disposto ad accettare scorciatoie”.

Mi pare una dichiarazione formalmente corretta da un punto di vista logico ma assolutamente priva di buon senso, perché non si stava parlando dell’Avigan né della clorochina dei complottisti. La dichiarazione riguardava vaccini che stavano seguendo tutte le procedure necessarie per ricevere l’approvazione dagli organi preposti.
Quindi un’implicazione con antecedente vero per definizione perché nessun vaccino può essere somministrato senza essere stato opportunamente testato e senza soddisfare tutti i criteri di sicurezza ed efficacia. Quello di Crisanti è stato quindi un esercizio di stile che ha avuto l’effetto di una dichiarazione ovvia per chi già sapeva come stavano le cose, e, invece, ha confuso la maggior parte dei cittadini che non sanno nulla delle procedure di approvazione dei farmaci.
Ne ho avuto la riprova con un’amica, non negazionista, né antivax, e di istruzione medio-alta, che, dopo aver sentito le dichiarazioni di Crisanti ha cominciato ad avere dubbi se vaccinarsi o meno.

domenica 26 maggio 2019

Sull’irragionevole efficacia della matematica nelle scienze naturali - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta ho riportato delle osservazioni di Zellini sul limite del concetto di limite.

Oggi riporto osservazioni sull’irragionevole efficacia della matematica nelle scienze naturali.

"Alla fine, quella che è stata definita «l’irragionevole efficacia della matematica nelle scienze naturali» appare la conseguenza di una complessa e articolata combinazione di proprietà e di circostanze che attenuano sensibilmente l’impressione iniziale di accidentalità dei possibili collegamenti tra i concetti astratti della matematica e il mondo fisico.
...
Il concetto di sezione e il continuo aritmetico di Dedekind sono la naturale conseguenza di un fatto primordiale che si esprime in una costruzione algoritmica: «Non è forse vero che il concetto di partizione [di sezione secondo Dedekind] è preceduto da un fatto puramente algoritmico, cioè dal bisogno di giustificare e legittimare certi processi algoritmici come quello dell’approssimazione per eccesso e per difetto di √ 2, che si traducono precisamente nella costruzione di classi composte di infiniti numeri discreti?».
...
Come spiegava Tommaso d’Aquino, prima di ciò che esiste in potenza deve esserci qualcosa che esiste in atto, perché la potenza non si risolve in atto se non per qualcosa che già esiste in atto."

lunedì 1 aprile 2019

Il limite del concetto di limite - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta ho riportato un'interessante osservazione di Zellini sul grado di realtà dei numeri.

Oggi riporto osservazioni altrettanto interessanti sul concetto di limite... In qualche modo sul limite del concetto di limite.

"...con applicazioni ripetute di un operatore si genera una successione di numeri la cui distanza dalla soluzione tende a zero. Da simili processi di calcolo, noti fin dalla più remota antichità, derivarono i concetti analitici di limite e di convergenza di una successione, e certe dimostrazioni di convergenza si basano ancora, più che su argomentazioni logiche, sull’esistenza e sulle proprietà degli stessi processi di calcolo. Ma siamo effettivamente in grado, con una procedura iterativa, di avvicinarci alla soluzione fino a ridurre la distanza a un valore arbitrariamente piccolo? I matematici non si sono posti questo problema per molto tempo, e si sente spiegare ancora oggi, con le stesse parole di Cauchy, come si possano calcolare, per una radice di un’equazione algebrica, «valori numerici approssimati arbitrariamente vicini». Tuttavia questo avvicinamento indefinito alla soluzione vale solo in linea di principio, e l’errore di approssimazione non può diventare arbitrariamente piccolo. Gli errori di arrotondamento creano fatalmente, attorno alla radice dell’equazione, un intervallo di incertezza che rende privi di significato i valori numerici calcolati oltre un certo limite di approssimazione: un buon algoritmo potrà fornire, dopo un certo numero di passi, un valore all’interno di quell’intervallo, ma non ha senso cercare di migliorare quel valore calcolandone uno successivo dentro lo stesso intervallo."

Altre considerazioni correlate:Zellini e l'ontologia della matematica
Roberto Natalini e il rapporto tra matematica e realtà
Ma i numeri hanno tutti lo stesso grado di realtà?

mercoledì 23 gennaio 2019

Ma i numeri hanno tutti lo stesso grado di realtà? - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta hocommentato la considerazione di Zellini secondo cui nel continuo ci sono infinite metà, ma solamente in potenza e non in atto. "In termini più semplici si potrebbe riassumere così: è assurdo pensare che ciò che si muove si muova contando."

Oggi riporto un'interessante osservazione sul grado di realtà dei numeri. Cioè, sul loro statuto ontologico.

"...Quel che è certo, al contrario di ciò che pensavano Cantor o Frege, è che i numeri non hanno tutti il medesimo statuto ontologico. I numeri che esistono, ma che non si possono calcolare, non hanno la stessa realtà dei numeri calcolati dalla macchina. I primi non si collocano, a differenza dei secondi, nello spazio e nel tempo di un’effettiva elaborazione automatica, né attualmente né virtualmente. Da un certo punto di vista un numero esiste, è reale, solamente se c’è una effettiva procedura che lo calcola. Ma questa procedura deve essere anche efficiente: altrimenti, come nel caso del metodo di Cramer o della matrice di Hilbert, non si saprebbe distinguere, sul piano di una effettiva realizzabilità, il calcolabile dal non calcolabile. Ciò che è calcolabile è come se non lo fosse."



Altre considerazioni correlate:
Zellini e l'ontologia della matematica
Roberto Natalini e il rapporto tra matematica e realtà
Non ci si può muovere contando

domenica 1 luglio 2018

Non ci si può muovere contando - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta abbiamo visto come Zellini dà ragione a Zenone ritenendo che Weierstrass, col bandire rigorosamente tutti gli infinitesimali, dimostrò finalmente che viviamo in un mondo immutabile, e che la freccia, in ogni singolo istante del suo volo, è realmente in quiete. L’immobilità prevale sul movimento che può essere interpretato attraverso le sole coordinate dello spazio-tempo, e quindi per via di successive posizioni fisse e puntuali. Per cui «La meccanica può spiegare il movimento solo attraverso l’immobilità».

Oggi proseguiremo ancora su quel tema riportando le considerazioni che spingono Zellini a concludere: "nel continuo ci sono, è vero, infinite metà, ma solamente in potenza, non in atto. In termini più semplici si potrebbe riassumere così: è assurdo pensare che ciò che si muove si muova contando. Ma allora era chiaro che il movimento e la continuità della retta non potevano trovare una spiegazione nei soli numeri naturali con cui si contano le cose una per una. Si sarebbe resa necessaria una teoria più generale del numero e una estensione dell’idea di attualità a quelli che alla fine del XIX secolo si sarebbero chiamati, non a caso, numeri reali."

"Come spiegava Russell, «infinità e continuità appaiono insieme nell’aritmetica pura» (Principles, par. 435). Fu questa conquista dell’intelletto a presentarsi come un rimedio alle difficoltà che Zenone aveva sollevato circa la natura del movimento e la composizione del continuo. La soluzione moderna del paradosso di Achille si basò sull’assumere come reale o possibile proprio ciò che Zenone considerava paradossale, cioè, nel commento di Russell, l’assenza di uno stato di moto: un sacrificio che salvava un dato irrinunciabile, l’esistenza attuale delle cose. Un’entità attuale, notava Whitehead, non si muove: essa è dove è ed è ciò che è. Russell sosteneva che la nozione di uno stato di moto non è fondata, perché il movimento è fatto di posizioni atomiche occupate in determinati istanti, entrambi valutabili mediante numeri reali, corrispondenti a punti della retta. Aristotele (Fisica, 234 a 24 sgg.) aveva dimostrato che nulla può muoversi in un istante fissato, e che perciò il tempo non è fatto di istanti. Russell rispondeva che in effetti è vero, nell’istante nulla si muove, e che questo è compatibile con una teoria coerente del continuo aritmetico provvisto di metrica euclidea, come era stato elaborato da Weierstrass, da Dedekind e da Cantor. Solamente così si poteva garantire la realtà di ciò che muta e si muove. Il paradossale diventava reale...

La matematica è sempre stata un’arte del paradosso, e le sue formule hanno spesso suscitato una reazione d’incredulità nello stesso scienziato che le ha scoperte o ideate. Ma la matematica è anche un’arte di costruire simulazioni e modelli fedeli, fin dove è possibile, delle nostre concezioni comuni, mediante definizioni e teorie in grado di farci riconoscere ciò che ci attendiamo. A quell’impercettibile forzatura che si coglie nei commenti di Russell, seguì l’esplicito imbarazzo del commento al primo paradosso sul moto di Zenone da parte di Hilbert e di Bernays, fatto proprio, successivamente, anche da Stephen Kleene: C’è una soluzione molto più radicale del paradosso. Questa consiste nel prendere atto che non siamo obbligati in nessun modo a credere che la rappresentazione matematica del moto in termini di spazio e tempo sia fisicamente significativa per intervalli di spazio e di tempo arbitrariamente piccoli; piuttosto abbiamo ogni ragione di supporre che quel modello matematico estrapola i fatti di un certo dominio di esperienza, cioè i movimenti entro ordini di grandezza finora accessibili alla nostra osservazione, nel senso di una semplice costruzione concettuale, analoga al modo in cui la meccanica dei continui effettua un’estrapolazione in cui si assume che lo spazio sia riempito, in modo continuo, di materia.
...
La situazione è simile in tutti i casi in cui si crede possibile esibire direttamente un infinito [attuale] come dato dall’esperienza o dalla percezione
...
Un esame più attento mostra allora che un’infinità non ci è data in nessun modo, ma è interpolata o estrapolata per via di un procedimento intellettuale. Non c’era però altra via se non appunto quella di estrapolare, di completare i fatti dell’esperienza con un modello matematico del continuo, riconducibile a sua volta, come notò Hermann Weyl, a una mera costruzione simbolica. Aristotele (Fisica, 263 a 25-30) osservava che se si divide ripetutamente il continuo in due metà non possono risultare continui né la linea né il movimento. Il movimento, precisava, è proprio di un continuo, e nel continuo ci sono, è vero, infinite metà, ma solamente in potenza, non in atto. In termini più semplici si potrebbe riassumere così: è assurdo pensare che ciò che si muove si muova contando. Ma allora era chiaro che il movimento e la continuità della retta non potevano trovare una spiegazione nei soli numeri naturali con cui si contano le cose una per una. Si sarebbe resa necessaria una teoria più generale del numero e una estensione dell’idea di attualità o di entelechia a quelli che alla fine del XIX secolo si sarebbero chiamati, non a caso, numeri reali."

...continua...

Altre considerazioni correlate:
Zellini e l'ontologia della matematica
Roberto Natalini e il rapporto tra matematica e realtà
Ma i numeri hanno tutti lo stesso grado di realtà?

mercoledì 16 maggio 2018

Zenone aveva ragione! - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini

L'ultima volta ho condiviso considerazioni di Zellini sul tema del realismo in matematica e dall'annoso pitagorico problema dei razionali e degli irrazionali.
Oggi proseguiamo su quel tema riportando le considerazioni di Zellini sui paradossi di Zenone... Ma quindi Zenone aveva ragione?

"In questo mondo capriccioso, nulla è più capriccioso della fama presso i posteri. Una delle più notevoli vittime della mancanza di senno è Zenone di Elea. Malgrado abbia inventato quattro argomentazioni tutte smisuratamente sottili e profonde, la stupidità dei filosofi a lui successivi proclamò che Zenone non era altro che un ingegnoso giocoliere e le sue argomentazioni erano tutte sofismi. Dopo duemila anni di continua confutazione, questi sofismi sono stati nuovamente enunciati, e formarono la base di una rinascita della matematica ad opera di un professore tedesco...
Weierstrass, col bandire rigorosamente tutti gli infinitesimali, ha finalmente dimostrato che noi viviamo in un mondo immutabile, e che la freccia, in ogni singolo istante del suo volo, è realmente in quiete.
Russell (Principles, par. 332) pensava che l’argomento della freccia enunciasse un fatto del tutto elementare, e che il trascurarlo avesse tenuto la filosofia del movimento in un pantano per lunghi secoli. Il suo richiamo a Karl Weierstrass si può spiegare in questo modo: assieme ad Augustin-Louis Cauchy, Weierstrass fu il primo matematico a rifondare con chiarezza l’analisi senza infinitesimi, affermando che

una funzione f(x) tende a un limite L, per x che tende a l, se, in corrispondenza a un dato valore positivo ε comunque piccolo, si può trovare un numero positivo δ (dipendente da ε) tale che la distanza di f(x) da L è minore di ε quando la distanza di x da l è minore di δ. Se L = 0 la funzione f si approssima a 0 per x che tende a l, ma nella definizione si evita appositamente di dire che il valore f(x) diventa infinitesimo.

Scompare allora l’idea del fluire, della tensione dinamica della variabile verso il suo limite, semplicemente perché le variabili, entro i confini disegnati da ε e da δ, non si muovono affatto, assumono soltanto i valori che a loro competono. L’immobilità prevale sul movimento
Si può allora definire la velocità di un corpo in un istante t soltanto come il limite del rapporto tra lo spazio percorso e il tempo di percorrenza al tendere della variabile tempo all’istante t. Questo limite, un semplice numero, è la derivata dello spazio come funzione del tempo di percorrenza all’istante t. In questo modo si potevano evitare le «quantità evanescenti» concepite nei primi sviluppi del calcolo infinitesimale.
...
I numeri razionali e irrazionali, pensati come limiti di variabili, ereditavano la natura effettiva e reale di concetti fisici come la velocità e l’accelerazione. Negli stessi numeri si potevano ravvisare delle entità atomiche paritetiche ai punti della retta. Il movimento poteva essere interpretato attraverso le sole coordinate dello spazio-tempo, e quindi per via di successive posizioni fisse e puntuali. «La meccanica può spiegare il movimento solo attraverso l’immobilità».

Solamente nei numeri, era questa la conclusione importante, si trovava la realtà del continuo spazio-temporale. E i numeri che assolvevano a questo compito potevano essere sia razionali che irrazionali. Di più, l’esistenza dei numeri reali (razionali + irrazionali) sarebbe apparsa, dopo Weierstrass, l’effetto di una libera creazione del matematico, ancorché indotta da proprietà oggettive del corpo numerico. Quale migliore accordo tra pensiero e natura, tra libertà ed effettività?
...
ma la continuità geometrica era già di fatto concepita, grazie alle teorie di Cantor e di Dedekind, come un dominio di numeri attuali. Il disegno dell’aritmetizzazione dell’analisi aveva già atomizzato l’estensione continua. L’attualità poggia infine, nella teoria del continuo numerico, su entità atomiche definite, costituenti un sistema di divisioni reali, di eventi istantanei in relazione con altri eventi collocati in qualche punto del continuo. Tra numeri e punti si stabilisce assiomaticamente una corrispondenza biunivoca, e per il tramite dei numeri i punti dello spazio e gli istanti del tempo acquistano una nuova specie di realtà."

Altre considerazioni correlate:
Zellini e l'ontologia della matematica
Roberto Natalini e il rapporto tra matematica e realtà

mercoledì 12 aprile 2017

Giuro di dire tutta la verità: la logica e il diritto

A chi non è mai capitato di pensare che la formula giuridica che obbliga a dire tutta la verità, solo la verità e niente altro che la verità fosse un po' ridondante?
In realtà, questa formulazione serve per escludere i falsi negativi, e cioè che un colpevole sfugga alla condanna, o i falsi positivi, e cioè che un innocente la subisca.


Perché? Perché se non dico tutta la verità che conosco tra quei fatti nascosti potrebbero essercene alcuni che potrebbero incastrare il colpevole o scagionare un innocente. Analogamente se non dico niente altro che la verità aggiungendo qualche fatto non vero.


Ecco come ne parlano Stefano Leonesi e Carlo Toffalori nel loro libro Logica a processo: da Aristotele a Perry Mason, in cui paragonano i concetti di coerenza e completezza della logica matematica a quelli della suddetta formula giuridica.

"Occorrerà che assiomi e regole di deduzione si rivelino così centrati e potenti da superare la prova dei fatti, e cioè:
escludere dai teoremi qualsiasi contraddizione.
garantire a ogni proposizione una soluzione, ovvero una dimostrazione o una confutazione.
Il primo requisito è, appunto, la coerenza, il secondo la completezza. Si vorrà poi, in riferimento al concetto tarskiano di verità, che un’affermazione finisca per essere provata se e solo se è suffragata appunto dai fatti, che dunque il sistema deduca tutto quello che corrisponde alla realtà e niente di quello che la smentisce. Per dirla in termini giuridici, si chiederà al sistema di dimostrare la verità: “tutta la verità” –la completezza –e “niente altro che la verità” –la coerenza. Come dire, per restare ancora nel campo della giustizia: escludere in un’indagine che un colpevole sfugga alla condanna, o che un innocente la subisca."