L'edizione di maggio del Carnevale della Matematica, la numero 129, è ospitata dal blog Scienza e Musica, il tema è "La matematica del XVIII e XIX secolo" ed è molto interessante anche per la lunga introduzione storica di Leonardo Petrillo.
Così viene introdotto il carnevale:
Tale edizione ha nome in codice (dovuto al sommo Popinga) "il merlo intrepido" e cellula melodica (grazie a Dioniso Dionisi, che ritroveremo come partecipante):
Oltre che con la cellula melodica ho contribuito con...
Per quanto riguarda l'edizione numero 130...
non è ancora stata assegnata.
Calendario con le date delle prossime edizioni del Carnevale.
Così viene introdotto il carnevale:
Tale edizione ha nome in codice (dovuto al sommo Popinga) "il merlo intrepido" e cellula melodica (grazie a Dioniso Dionisi, che ritroveremo come partecipante):
Oltre che con la cellula melodica ho contribuito con...
Flavio Ubaldini (conosciuto sul web come Dioniso Dionisi), oltre alla cellula melodica che avete potuto apprezzare all'inizio del Carnevale, ci invia, dal blog Pitagora e dintorni, un contributo che rientra in tema, pensate un po', per soli 3 anni! Trattasi infatti della seconda parte di un post dedicato ai cosiddetti numeri p-adici. Questi furono introdotti, nel 1897, dal matematico tedesco Kurt Hensel (1861-1941), allievo di Kronecker e mostrano un'importante utilità nell'ambito della teoria dei numeri. Ripartendo dalla segnalazione della 1° parte, il nostro Dioniso, in "La medaglia Fields e i numeri p-adici - seconda parte", ci regala una stimolante chiacchierata esplicativa, concludendo alla fine con diverse feconde risorse per approfondire il tema trattato. Ecco l'incipit del post:
"– Allora, dicevamo che … non mi ricordo più…
– E certo! Dopo così tanto tempo! Avevamo concluso con la mia domanda. "Non è un po’ strana questa norma? Conta solo il fatto che il primo p fissato compaia o meno nella fattorizzazione del numero, e più l’esponente con cui p compare è grande più la norma è piccola. E comunque, abbiamo parlato di norma ma non mi hai ancora mostrato un esempio di numero p-adico."
Aspettate; c'è pure un secondo contributo di Flavio. Trattasi di una libera traduzione, come l'ultima volta, di un passo tratto dal libro What Is Mathematics, Really? di Reuben Hersh inerente al platonismo in matematica. Il post in questione cerca di rispondere alla domanda: "I numeri naturali sono stati scoperti o inventati?". L'ho inserito nella sezione dei contributi in tema giacché lo spunto di riflessione sulla suddetta domanda scaturisce da una celebre affermazione di Leopold Kronecker:
"Dio fece i numeri interi; tutto il resto è opera dell'uomo."
Per saperne di più proseguite la lettura su Pitagora e dintorni.
"– Allora, dicevamo che … non mi ricordo più…
– E certo! Dopo così tanto tempo! Avevamo concluso con la mia domanda. "Non è un po’ strana questa norma? Conta solo il fatto che il primo p fissato compaia o meno nella fattorizzazione del numero, e più l’esponente con cui p compare è grande più la norma è piccola. E comunque, abbiamo parlato di norma ma non mi hai ancora mostrato un esempio di numero p-adico."
Aspettate; c'è pure un secondo contributo di Flavio. Trattasi di una libera traduzione, come l'ultima volta, di un passo tratto dal libro What Is Mathematics, Really? di Reuben Hersh inerente al platonismo in matematica. Il post in questione cerca di rispondere alla domanda: "I numeri naturali sono stati scoperti o inventati?". L'ho inserito nella sezione dei contributi in tema giacché lo spunto di riflessione sulla suddetta domanda scaturisce da una celebre affermazione di Leopold Kronecker:
"Dio fece i numeri interi; tutto il resto è opera dell'uomo."
Per saperne di più proseguite la lettura su Pitagora e dintorni.
Per quanto riguarda l'edizione numero 130...
non è ancora stata assegnata.
Calendario con le date delle prossime edizioni del Carnevale.
Nessun commento:
Posta un commento