domenica 14 ottobre 2018

What is Mathematics, Really? di Reuben Hersh - Ma il platonismo in matematica è una sorta di religione?

Ma il platonismo in matematica tende a una trasfigurazione mistica della materia tramutandola in una sorta di religione?

Così sembra pensarla Reuben Hersh, autore di What Is Mathematics, Really?

L'ultima volta che ho parlato di questo libro ho riportato un brano in cui l'autore cerca di indagare la natura degli oggetti matematici. Oggi propongo riflessioni sulle varie scuole di pensiero che hanno cercato di indagare tale natura. Come al solito, il tutto è in libera traduzione.

Il costruttivista considera i numeri naturali come il dato fondamentale della matematica, che non si può né si deve ridurre a una nozione più basilare, e da cui deve essere costruita tutta la matematica.

Il platonista considera gli oggetti matematici come preesistenti, una volta per tutte, in un indefinito senso ideale e atemporale. Il matematico non creerebbe ma scoprirebbe ciò che esiste già, compresi gli infiniti di una complessità non ancora concepita dalla sua mente.

Il formalista rifiuta sia le restrizioni del costruttivista sia la teologia del platonista. Ciò che conta sono solo le regole di inferenza con cui trasforma una formula in un'altra. Qualsiasi significato di tali formule è al di fuori della matematica e quindi non interessa al formalista.



Che cosa manca a ognuna di queste tre filosofie da un punto di vista intuitivo?

La difficoltà più ovvia è quella che affligge il platonista. Se gli oggetti matematici costituiscono un mondo ideale immateriale, in che modo la mente umana stabilirebbe un contatto con quel mondo? Consideriamo, ad esempio, l'ipotesi del continuo. Gödel e Cohen hanno dimostrato che non può essere dimostrata né smentita dagli attuali assiomi della matematica. Il platonista dovrebbe considerare questo risultato un inaccettabile manifestazione di ignoranza. Secondo lui il continuo dovrebbe essere un oggetto definito e indipendente dalla mente umana. E quindi dovrebbe o contenere o non contenere un sottoinsieme infinito non equivalente né all'insieme dei numeri interi né all'insieme dei numeri reali. Dovrebbe essere la nostra intuizione a dirci quale sia il caso. Il platonista ha quindi bisogno dell'intuizione per collegare la consapevolezza umana e la realtà matematica. Ma questo suo concetto di intuizione è inafferrabile. Il platonista non lo descrive né, tantomeno, lo analizza.
Ci si potrebbe chiedere: come viene acquisita questa intuizione? Varia da persona a persona, da matematico a matematico? Deve essere sviluppata e raffinata. Ma in che modo e con quali criteri la si sviluppa? L'intuito del platonista vedrebbe direttamente una realtà ideale così come i nostri occhi percepiscono la realtà visibile? 

Quindi l'intuizione sarebbe una seconda entità ideale, la controparte soggettiva della realtà matematica platonica. E così abbiamo introdotto un secondo mistero. Oltre alla misteriosa relazione tra la realtà mondana del cambiamento e quella delle idee atemporali e immateriali; adesso abbiamo anche la misteriosa relazione tra il matematico in carne e ossa e la sua intuizione, che percepisce direttamente l'eterno e l'atemporale.
Queste difficoltà rendono il platonismo difficile da sostenere per una persona con una mentalità scientifica. Ma i platonisti matematici ignorano bellamente tali difficoltà. Per loro, l'intuizione è qualcosa di inanalizzabile ma indispensabile. Così come l'anima del protestantesimo moderno, l'intuizione esiste, ma non può essere oggetto di dibattito.


...continua...

lunedì 1 ottobre 2018

La medaglia Fields e i numeri p-adici - prima parte

– Ma allora questo Peter Scholze avrebbe vinto la Medaglia Fields per ricerche nell'ambito dei numeri p-adici?

– Ma come? Tutti parlano dell'italiano Alessio Figalli vincitore della medaglia Fields per i contributi alla teoria del trasporto ottimale e alle sue applicazioni alle equazioni alle derivate parziali e tu ti interessi al campo di ricerca del vincitore tedesco? Sei un po' al di fuori dello spirito del tempo. Non sai che questo è il momento di "prima gli italiani"?!

– Scusa, ma hai visto il mio colore? Pensi che certi slogan possano far presa su di me?

– Beh... effettivamente...

– E poi... quel tipo di matematica, equazioni alle derivate parziali e cose simili, non mi ha mai appassionata molto. È troppo complicata per me.

– Ah! E invece pensi che i numeri p-adici siano semplici?

– Boh… forse no però, da quel poco che ho sentito, una delle conseguenze dell'introduzione di quei inumeri mi ha ricordato la nostra discussione su Dedekind, il suo taglio e la soluzione del problema di Ippaso.

– Sì, è vero. Sono temi correlati. Con quella tecnica Dedekind definì i numeri irrazionali, come la radice quadrata di 2, a partire dai numeri interi. Detto in altre parole estese l'aritmetica dei numeri razionali (interi e frazioni) ai numeri irrazionali creando così il campo dei numeri reali.

– Sì, mi ricordo.

– E con i numeri p-adici, sebbene essi siano nati inizialmente per applicazioni nell'ambito della teoria dei numeri, si può fare una cosa simile a quella che fece Dedekind. Cioè, si possono estendere i numeri razionali a quelli reali in un modo diverso rispetto a quello di Dedekind. Ma che risulta anche un po' più complicato.

– Ancora più complicato di quel metodo?!

– Eh, sì. Credo che sia molto meno intuitivo. Sostanzialmente, l'estensione è ottenuta attraverso un'interpretazione alternativa del concetto di distanza.

– E cioè? Come viene definita questa distanza?

– Allora, dato un numero p fissato, si possono costruire i numeri p-adici ottenuti a partire da quel numero p. La vicinanza tra due di questi numeri p-adici, chiamiamoli a e b, si misura attraverso la divisibilità della loro differenza, a - b,  per una potenza pn. Più il pn che la divide è grande, più i due numeri sono vicini.
Questa proprietà consente ai numeri p-adici di codificare informazioni che generano potenti applicazioni nella teoria dei numeri, inclusa, ad esempio, anche la famosa dimostrazione dell'ultimo teorema di Fermat di Andrew Wiles.
Inoltre, con l'estensione ai numeri reali di cui parlavamo, si riesce anche a estendere la tradizionale analisi matematica a un'analisi p-adica che, in certi ambiti, fornisce una forma alternativa all'analisi matematica tradizionale.

– Interessante. Non credo di aver capito bene il discorso della distanza, però.

– Allora, cerchiamo di definirla in modo un po’ più intuitivo.

– Quando parliamo di un solo numero la distanza coincide con la misura del numero, giusto?

– In qualche modo sì. In quel caso la distanza viene chiamata anche “norma”. Sui numeri reali tradizionali corrisponde al numero stesso privato del segno. Ad esempio, la norma di 2, indicata con |2|, è 2 così come la norma di -2:
|-2|=2

– E sui p-adici?

– Nel caso dei p-adici la cosa è leggermente più complessa. Dobbiamo partire dal fatto che ogni numero razionale q diverso da zero può essere scritto come

 q=pa·r/s     (1)

dove p è un numero primo fissato, r ed s due interi non divisibili per p, e a è l’unico intero che soddisfi la (1). E quindi definiamo la norma p-adica di q come

|q|p=pa

– Scusa, ma la (1) è una conseguenza del Teorema fondamentale dell’aritmetica, vero?

– Sì, certo. Del fatto che Ogni numero naturale maggiore di 1 si può esprimere come prodotto di numeri primi. È più chiaro adesso?

– Un pochino. Però vorrei vedere qualche esempio.

– Allora, prendiamo una frazione non semplicissima: q = 140/297. Se la fattorizziamo in numeri primi avremo che:

140 = 22·5·7
297 = 33·11

E dunque,

140/297 = 22·3-3·5·7·11-1

– Ah, ho capito! A seconda del numero primo che sceglierò come base p-adica avrò una norma diversa?

– Certo! In questo caso, a seconda della scelta di p = 2, 3, 5, 7 o 11, come norma 2-adica, 3-adica, 5-adica, 7-adica o 11-adica avremo:

|140/297|2 = 2-2 = 1/4
|140/297|3 = 33 = 27
|140/297|5 = 5-1 = 1/5
|140/297|7 = 7-1 = 1/7
|140/297|11 = 11

Ed ecco degli altri esempi di norme 2-adiche e 3-adiche:

p = 2

1 = 20 =>                |1|2 = 2-0 = 1

2 = 21 =>                |2|2 = 2-1 = ½
1/2 = 2-1 =>            |1/2|2 = 21 = 2
3 = 20·31 =>           |3|2 = 2-0 = 1
1/3 = 2-0·3-1 =>       |1/3|2 = 20 = 1
4 = 22 =>                |4|2 = 2-2 = ¼
1/4 = 2-2 =>            |1/4|2 = 22 = 4
5 = 20·5 =>             |5|2 = 2-0 = 1
1/5 = 2-0·5-1 =>       |5|2 = 20 = 1
6 = 21·3 =>             |6|2 = 2-1 = ½
1/6 = 2-1·3-1 =>       |6|2 = 21 = 2
7 = 20·7 =>             |7|2 = 2-0 = 1

8 = 23 =>                |8|2 = 2-3  = 1/8
2/3 = 21·3-1 =>       |2/3|2 = 2-1 = 1/2
9 = 20·32 =>           |9|2 = 2-0 = 1

10 = 21·5 =>           |10|2 = 2-1 = ½
2/3 = 21·3-1 =>       |2/3|3 = 31 = 3
11 = 20·11 =>         |11|2 = 2-0 = 1
 1/8 = 2-3 =>           |1/8|2 = 23 = 8
12 = 22·3 =>           |12|2 = 2-2 = 1/4
1/16 = 2-4 =>              |16|2 = 24 = 16
13 = 20·13 =>         |13|2 = 2-0 = 1
16 = 24 =>              |16|2 = 2-4 = 1/16


p=3
1 = 30 => |1|3 = 3-0 = 1
2 = 2·30 => |2|3 = 3-0 = 1
3 = 31 => |3|3 = 3-1 = 1/3
4 = 22·30 => |4|3 = 3-0 = 1
5 = 30·5 => |5|3 = 3-0 = 1
6 = 2·31 => |6|3 = 3-1 = 1/3
7 = 30·7 => |7|3 = 3-0 = 1
8 = 23·30 => |8|3 = 3-0 = 1
9 = 32 => |9|3 = 3-2 = 1/9
10 = 2·30·5 => |10|3 = 3-0 = 1
11 = 30·11 => |11|3 = 3-0 = 1
12 = 22·31 => |12|3 = 3-1 = 1/3
13 = 30·13 => |13|3 = 3-0 = 1
14 = 2·30·7 => |14|3 = 3-0 = 1
15 = 31·5 => |15|3 = 3-1 = 1/3
16 = 24·30 => |16|3 = 3-0 = 1
17 = 30·17 => |17|3 = 3-0 = 1
18 = 21·32 => |18|3 = 3-2 = 1/9


– Beh, adesso capisco meglio. Però…

– Che cosa?

– Non è un po’ strana questa norma? Conta solo il fatto che il primo p fissato compaia o meno nella fattorizzazione del numero, e più l’esponente con cui p compare è grande più la norma è piccola. E poi, abbiamo parlato di norma ma non mi hai ancora mostrato un esempio di numero p-adico.

– Te ne mostrerò più di uno, ma non oggi.

...continua...

domenica 16 settembre 2018

Carnevale della Matematica #121

L'edizione di settembre del Carnevale della Matematica, la numero 121, è ospitata da Paolo Alessandrini su Mr. Palomar e il tema è "Matematica e arte".

Paolo la introduce così
Benvenuti all'edizione 121 del Carnevale della Matematica, il settimo ospitato da Mr. Palomar. Com'era accaduto anche l'anno scorso, il Carnevale si è preso una lunga pausa nei mesi di luglio e agosto: per tale motivo l'edizione settembrina non si limita ai contributi dell'ultimo mese ma spazia sull'ultimo trimestre, risultando insolitamente ricca.


Io ho contribuito con...

Flavio "Dioniso Dionisi" Ubaldini ha fornito, come da consolidata usanza, la cellula melodica di questo Carnevale. Come sottolinea il suo autore, essa presenta una inedita caratteristica:

Essendo il primo quadrato perfetto di un numero primo da quando ci sono le cellule melodiche, questa è la prima cellula a essere composta da un solo suono ribattuto: quasi un segnale di allarme al manifestarsi dell’alba.

 

Il tema di questa edizione del Carnevale, come sempre non obbligatorio, è "Matematica e arte". Senza distinguere tra contributi a tema e contributi non a tema, cominciamo dunque la ricca carrellata.

Il già menzionato Dioniso Dionisi, raffinato matematico-musicista autore del blog Pitagora e dintorni, ci propone un generoso elenco di contributi.

Matematica e musica al premio-UMI Archimede: Matematica è Cultura
Il 23 giugno Dioniso ha parlato di "Matematica e musica" nella Sala delle Lapidi del Palazzo delle Aquile, il municipio di Palermo, nell'ambito del premio-UMI Archimede: Matematica è Cultura. È stata per lui un'esperienza molto positiva, durante la quale ha ricevuto commenti assai incoraggianti, inclusi un paio di probabili inviti per eventi futuri.

Non ci si può muovere contando - "La matematica degli dèi e gli algoritmi degli uomini" di Paolo Zellini
Proseguono i commenti su Zellini, Zenone  e il calcolo infinitesimale.
Dopo aver visto che viviamo in un mondo immutabile, e che la freccia, in ogni singolo istante del suo volo, è realmente in quiete, Zellini conclude: "nel continuo ci sono, è vero, infinite metà, ma solamente in potenza, non in atto. In termini più semplici si potrebbe riassumere così: è assurdo pensare che chi si muove si muova contando. Ma allora è chiaro che il movimento e la continuità della retta non possono trovare una spiegazione nei numeri naturali con cui si contano le cose una per una. Si rende necessaria una teoria più generale del numero e una estensione dell’idea di attualità a quelli che alla fine del XIX secolo si sarebbero chiamati, non a caso, numeri reali."

Le connessioni tra matematica e musica - "From Music to Mathematics: Exploring the Connections"
Una libera traduzione da "From Music to Mathematics: Exploring the Connections" di Gareth E. Roberts in cui l'autore evidenzia connessioni a vari livelli tra le strutture della matematica e della musica.

Il mio dramma "I Pitagorici" di nuovo in scena a Torino
Il 20 novembre alle 17 "I Pitagorici", tratto da “Il mistero del suono senza numero”, sarà di nuovo in scena. Danza e scenografia virtuale arricchiranno la recitazione di Maria Rosa Menzio e Simonetta Sola.

Intervista su musica e numeri a "L'ultima spiaggia" di Radio 1
Mario Pezzolla ha intervistato Dioniso per pochi minuti durante la trasmissione "L'ultima spiaggia" di Radio 1. Il tema è stato i rapporti tra musica e matematica.

Matematizzazione della fisica e misticismo crociano
Dioniso riporta due interessanti brani dal libro “I paradossi di Zenone” di Vincenzo Fano.
«Secondo alcuni filosofi contemporanei le soluzioni matematiche dei paradossi non colgono il punto posto da Zenone – né mai lo coglieranno. Gli avanzamenti matematici non avrebbero alcuna rilevanza metafisica e troverebbero il loro uso appropriato solo nel “rendere più veloci i jet”.
Prendiamo le distanze da queste forme di misticismo, che oggi purtroppo sono alquanto comuni.»



Per quanto riguarda l'edizione numero 122... 
14 ottobre 2018: (“canta, merlino”) Al caffè del Cappellaio matto – La matematica e l’arte visuale
Calendario con le date delle prossime edizioni del Carnevale.


venerdì 31 agosto 2018

Matematizzazione della fisica e misticismo crociano

Riporto due interessanti brani dal libro “I paradossi di Zenone” di Vincenzo Fano.

«La filosofa canadese Trish Glazebrook (2001) rilegge i paradossi di Zenone come una critica alla tesi pitagorica secondo cui la realtà sarebbe numero.
Tale lettura, pur essendo storicamente discutibile, è teoricamente ragionevole:

“Intendo usare i paradossi di Zenone sul moto per sostenere che l’applicazione dei concetti matematici al mondo fisico porta paradossi e che la matematizzazione della realtà fisica non è un’assunzione innocente... Suggerisco che il punto di Zenone potrebbe essere stato che la descrizione matematica del moto è problematica.”

Questo però non significa che abbracciamo la tesi della filosofia italiana, Alba Papa-Grimaldi, secondo la quale le soluzioni matematiche dei paradossi non colgono il punto posto da Zenone – né mai lo coglieranno.
In questa prospettiva, gli avanzamenti matematici non avrebbero alcuna rilevanza metafisica e troverebbero il loro uso appropriato solo nel “rendere più veloci i jet”. Per cui tali considerazioni matematiche “nemmeno scalfiscono la superficie” del problema metafisico di Zenone.
Benché le diverse possibili formalizzazioni vadano sempre usate con spirito critico, esse di fatto consentono una formulazione rigorosa dei problemi e un’analisi delle possibili soluzioni che difficilmente si possono raggiungere con il linguaggio ordinario della filosofia. Perciò prendiamo le distanze da queste forme di misticismo, che oggi purtroppo sono alquanto comuni.»

...

"In questo mondo capriccioso, nulla è più capriccioso della fama presso i posteri. Una delle più notevoli vittime della mancanza di senno è Zenone di Elea. Malgrado abbia inventato quattro argomentazioni tutte smisuratamente sottili e profonde, la stupidità dei filosofi all’lui successivi proclamò che Zhai non è non era altro che un ingegnoso giocolieri e le sue argomentazioni erano tutti sofismi.
Dopo 2000 anni di continua confutazione, questi sofismi sono stati nuovamente enunciati e formano la base di una rinascita della matematica, a opera di un professore tedesco, il quale probabilmente non aveva sognato che esistesse qualche legame fra lui e Zenone."

Bertrand Russell - Principia Matematica

lunedì 13 agosto 2018